-16t^2+40=0

Simple and best practice solution for -16t^2+40=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+40=0 equation:



-16t^2+40=0
a = -16; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-16)·40
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*-16}=\frac{0-16\sqrt{10}}{-32} =-\frac{16\sqrt{10}}{-32} =-\frac{\sqrt{10}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*-16}=\frac{0+16\sqrt{10}}{-32} =\frac{16\sqrt{10}}{-32} =\frac{\sqrt{10}}{-2} $

See similar equations:

| 2(7-x)=44 | | -25x+40=15x-80 | | 2x+15=8x-21 | | 4x+4=102 | | (5y-4)^2=12 | | 4v=18.4 | | 4v=18.3 | | 24x=12=2(12x+6) | | 4x=13x+36 | | 6n=6n | | 124=4x-4 | | 6•x=-5 | | 9/10=q/3 | | 4x-3/10-2-x/5=3/10 | | 8,8=k*(-2,4)+1,6 | | 9/10=q/3 | | 4x-3-2-x=3 | | 4x+5-5x+2-3.5=3.5 | | 5x+6=-4x-12 | | 5/3=10/q | | 5/3​ =10/q​ | | 3+8y=9y-5 | | 5y-6/3=4 | | 5x3x+60°=180° | | 14q-24=1-q | | 9x-15=7x+27 | | 5x+3.5=6 | | 2(4+y)=-13+5y | | 8x-9x=(8-2)x | | 92+56/14−x=100 | | 3x+14=64 | | -2/x+2=x+4/x^2-4 |

Equations solver categories